
Computer Networks and ISDN Systems 30 (1998) 457–467

Using path profiles to predict HTTP requests

Stuart Schechter Ł,a,1, Murali Krishnan b,2, Michael D. Smith c,1

a Harvard University and Microsoft, 29 Oxford St. #110, Cambridge, MA 02138, USA
b Microsoft, One Microsoft Way, Redmond, WA 98052, USA

c Harvard University, 29 Oxford St. #130, Cambridge, MA 02138, USA

Abstract

Webmasters often use the following rule of thumb to ensure that HTTP server performance does not degrade when
traffic is its heaviest — provide twice the server capacity required to handle your site’s average load. As a result the server
will spend half of its CPU cycles idle during normal operation. These cycles could be used to reduce the latency of a
significant subset of HTTP transactions handled by the server.

In this paper we introduce the use of path profiles for describing HTTP request behavior and describe an algorithm
for efficiently creating these profiles. We then show that we can predict request behavior using path profiles with high
enough probability to justify generating dynamic content before the client requests it. If requests are correctly predicted
and pre-generated by the server, the end user will witness significantly lower latencies for these requests. 1998 Published
by Elsevier Science B.V. All rights reserved.

Keywords: Prediction; Path profiles; HTTP performance; Dynamic content

1. Introduction

When the first World Wide Web sites came on-
line the entirety of the content handled by Hyper-
text Transfer Protocol (HTTP) servers was static.
Caching at the server and client reduced the laten-
cies of user requests. The arrival of HTTP proxies
put an additional layer of cache between the client
and server. Dynamic content, first introduced to the
Web in the form of CGI scripts, has increased the
usefulness of the Web dramatically. Unfortunately,
when content is generated differently for each re-

Ł Corresponding author.
1 E-mail: {stuart,smith}@eecs.harvard.edu
2 E-mail: muralik@microsoft.com

quest, caching can no longer be used to reduce
latency.

Currently, the industry is concentrating its efforts
to reduce the latency of HTTP requests for dy-
namically generated content by increasing the speed
of dynamic content generators. However, there is
a limit to the amount by which this technique can
decrease the user’s perceived response time, as the
current metaphor requires the server to wait for a
user’s request before it starts the dynamic generation
process.

An idle server waiting for a new request is sim-
ilar to a microprocessor waiting for its branch unit
to tell it which section of code should be executed
next. All modern high-performance microprocessors
use branch prediction to speculate on the location

0169-7552/98/$19.00 1998 Published by Elsevier Science B.V. All rights reserved.
PII S 0 1 6 9 - 7 5 5 2 (9 8) 0 0 1 0 6 - 8

458 S. Schechter et al. / Computer Networks and ISDN Systems 30 (1998) 457–467

of future instructions. If the machine predicts cor-
rectly then execution continues and the latency of the
branch execution is completely hidden. If the branch
prediction is incorrect there is little harm done —
the machine efficiently discards the results of the
speculative instructions and starts executing the in-
structions that the branch instructs it to execute.

If a Web server could predict the next URL to
be requested from a user, in a manner similar to
that in which a microprocessor predicts the location
of future instructions, then the server could then
generate dynamic content before a user requested it.
This would reduce the latency of requests that were
predicted correctly.

The technique we use to predict URLs is based on
the concepts of point and path profiles — tools that
have been well received in the area of compiler op-
timization. A page’s successor is the page requested
immediately after that page in a URL sequence.
Intuitively, a point profile contains, for any given
page, the set of that page’s successors (in all URL
sequences) and the frequency with which that suc-
cessor occurred. More concisely, for any two pages
X;Y , a point profile contains the frequency with
which Y was accessed immediately after X . Point
profile statistics are readily available from a number
of existing tools that use them to determine infor-
mation such as the success of advertising links. Path
profiles are harder to collect and are not supported
by existing tools.

A path is a sequence of URLs accessed by a
single user, ordered by the time of access. A path
may contain the same URL more than once. The
length of a path P , expressed as jPj, is equal to the
number of URL instances in P . Note that this differs
from the definition of a path length in the compiler
literature on path profiles [5]. The path that describes
the full set of requests made by a user within a
given time frame is called a user session, or simply a
session.

A path profile is a set of pairs, each of which
contains a path and the number of times that path
occurs over the period of the profile. The profile is
recorded over the set of all user sessions. Recording
this information efficiently is non-trivial, as the num-
ber of paths in a user session S grows as a function
of jSj3. We want to construct path profiles so that
we store the majority of the important paths without

recording so many of the unimportant paths that we
run out of memory.

Path profiles can be collected either by an HTTP
client recording its user’s paths through the entire
World Wide Web or by an HTTP server recording
the paths of all users that access its site. Client-side
profiling has the advantage of focusing on a single
user and revealing data about that user’s intersite
behavior. A smart HTTP client might also be able to
predict the information its user will enter into fields
with common labels such as “address”. However, no
standard currently exists for logging HTTP behavior
from the clients so customized client software would
be required to perform profiling.

Server-side profiles can be generated from stan-
dard HTTP server logs and thus require no changes
to existing software. Using server logs, a profile con-
taining records of a large number of accesses can
be generated quickly. However, server side profiles
cannot track activity that takes place off the server
and can rarely be used to predict the data that users
enter into form fields.

In this paper we describe an algorithm for ef-
ficiently generating path profiles from information
contained in standard HTTP server logs. Along the
way we discuss design decisions that must be made
when customizing the algorithm for use with differ-
ent Web applications.

We then show that these profiles predict HTTP
request behavior with high enough probability to
justify their use in page pre-generation. A common
rule of thumb for Webmasters is to provide server
capacity of at least twice that required to handle
average load. If a Webmaster follows this rule, then
the server will spend half of its CPU cycles idling
during normal operation. These cycles could be used
to reduce the latency of a significant subset of HTTP
transactions handled by the server.

In Section 2 of this paper we describe how we
use server logs to obtain the information needed
to generate path profiles. Section 3 describes the
algorithm for efficiently finding common paths and
the frequency with which they are accessed. Section
4 contains the experimental setup for using path
and point profiles to predict URL requests, with the
results and analysis discussed in Section 5. Section
6 describes future work and other uses of path based
prediction. Section 7 concludes this paper.

S. Schechter et al. / Computer Networks and ISDN Systems 30 (1998) 457–467 459

2. Server-side profiling using server logs

All HTTP logs we have encountered contain the
following five fields describing each request:
ž Date,
ž Time,
ž Source (Client) IP Address,
ž Name of file or script requested (derived from

URL),
ž Parameter field (derived from URL).

Before we can generate path profiles from the
user session paths as described in Section 1, we
must first isolate these user paths from the HTTP
log entry information. In order to do this we need
to decide whether the URLs used to form paths
should contain the parameter field or only the name
of the file or script. We need to match the requests
in the log to their users so that we may string these
requests together by user. We must also understand
the limitations of the information that can be derived
from server logs.

The initial versions of HTTP provided no means
for a client to pass any information to the server be-
yond the name of the file being requested. The pa-
rameter field was added to the URL request string
and is separated from the file name portion of the
URL by the “?” character. As the Web developed, the
parameter field was used for everything from passing
information from user entered forms to passing the
identity of the user. These parameters are often an es-
sential part of the URL — containing search strings,
record identifiers, or even the name of another URL
to be accessed. Unfortunately, these parameters may
also contain information that serves no purpose other
than to track the user’s session. Session specific infor-
mation, if used to determine whether a prediction is
correct or not, can falsely lower predictability rates.
Finding an automatic method for determining which
parameters to ignore and which should be considered
part of a URL remains an open problem. For now, we
will generate profiles that either ignore all parameters
or include all parameters as part of the URL.

Once we have determined what form of URL to
use, we need to compress the URLs down to a form
that is more compactly stored and more quickly com-
pared. A unique integer is mapped to each unique URL
string that occurs in the logs. If two strings represent
the same URL, they are assigned the same number.

For the rest of the paper, we assume that all URLs
have been mapped to these numbers.

Our prediction algorithm will guess the current
user’s next request by looking at what past users who
behaved similarly have done. While the concept of
a user’s session is essential to path profiling, few
HTTP log entries identify the user making each re-
quest. Because the concept of a user is essential to
path profiling, we are left with two options to dif-
ferentiate between users: supplement the logs with
unique user IDs or distinguish by their IP address.
IP addresses are less desirable because many such
addresses actually represent proxy servers that multi-
plex requests from many different users. Microsoft’s
Site Server Usage Analyst, which generates infor-
mation similar to point profiles, provides a runtime
filter for Microsoft’s server that distinguishes users
using unique identifiers stored in HTTP cookies [4].
However, since this tool has only recently been made
available and only works with Microsoft’s server, we
were forced to rely on IP addresses except where
otherwise noted.

It is impossible for a single HTTP server to trace
the path of a user through other sites. As a result, it
is also impossible to determine if a user has passed
through another site on the way between two pages
on a single server site. In order to determine whether
two hits from the same user were made during a
single visit to a site, we adopt the heuristic that any
two HTTP requests separated by more than thirty
minutes are not part of the same user session.

Finally, we must realize that the information avail-
able in the server log is limited. In this paper, some
of the documents we profile are static and as a re-
sult they may be cached at proxies. If a request is
short-circuited by a proxy, the server will never see
the request and no log entry will be created.

3. HTTP request prediction using paths

Recall that a path P is any sequence of URLs,
and that a user’s session is the path that contains the
ordered list of URLs accessed by that user within a
specified time constraint. In Section 2 we discussed
the inferences that allow us to generate session paths
from HTTP server logs. We now describe how these
sessions are used to generate a tree of important

460 S. Schechter et al. / Computer Networks and ISDN Systems 30 (1998) 457–467

paths. In the second subsection we describe the pre-
diction algorithm and how it uses this tree.

3.1. An efficient path discovery algorithm

Recall that the path length jPj is the number of
URLs in the sequence. By inspection one can see
that, in a given session S, there are jSj paths of
length one, jSj � 1 paths of length two, jSj � 2 paths
of length three, and so on. There is only one path of
length jSj, the session path. As a result, we see that
a session contains jSj2=2 paths P where jPj � jSj.
Further analysis shows that the average length of the
paths is jSj=3, and so the total number of URLs that
would be needed to store every path, using a naı̈ve
algorithm, is jSj3=6.

To address the worst-case space constraints our
algorithm stores all paths in the form of a tree in
which nodes may have a variable number of chil-
dren. The tree is built around the root node such that
a walk down the tree is equivalent to a walk through
a path of URLs. While related work on paths uses
multiple trees [5], there is no need to keep track of
multiple trees when a root node may have a variable
number of children, and thus can hold together all of
the path trees.

When recording a path in the tree, the first URL
in a path will be stored as a child of the root node of
the tree. The second URL in the path will be stored
in a node that is a child of the first URL’s node. This
may continue until the end of the path. To determine
if a path is stored in the tree, one may simply walk
down the tree, checking along the way that at step N
there exists a child of the current node with the label
that corresponds to the N th URL in the sequence and
stepping down to that child. However, not all paths

will be stored on the tree, as resource constraints
make this impossible.

In order to illustrate how paths can be stored in
this tree efficiently, we must first define the maximal
prefix of a path. A path Q is a prefix of path P iff
ž jQj < jPj, and
ž the elements of Q are the first jQj elements of P ,

in the same sequence.
Q is a maximal prefix of path P iff Q is a prefix of

P and jQj D jPj�1. In other words, a maximal pre-
fix is the sequence containing, in order, all the URLs
of the original path except for the last one. We also
define a suffix R to the elements of R sequentially
match the last jRj elements of path P .

We can reduce the number of potential paths in
the tree at the time of storage by only adding paths
of length greater than one to the tree if the path’s
maximal prefix has occurred at least T times. T is a
threshold that can be configured based on available
memory resources.

Recall that in Section 2 we reduced URLs from
strings to unique integers. Assume that for each user
session there is an array, URLSequence, of these in-
tegers. The URL numbers in URLSequence occur in
the same order as the URLs occurred in the user’s
session.

We start the algorithm with an empty tree of
paths, PathTree, which contains only a root node.
Upon creation, each node in the tree will be initial-
ized with an OccurrenceCount value of 0, except for
the root, which is initialized with an Occurrence-
Count of T . Each tree node, except the root, is also
labeled with a URL number.

The tree is then constructed by applying the fol-
lowing algorithm to each sequence of URLs that
represent a user’s session:

Ž FOR each URL in the sequence (stepping through using a SequenceIndex)
� CurrentNode root node of PathTree
� Index SequenceIndex
� DO
� Increment the OccurrenceCount of the CurrentNode (CurrentNode! OccurrenceCount)
� URL_Number URLSequence[Index]
� IF there does not exist a child of CurrentNode labeled with URL_Number

AND CurrentNode! OccurrenceCount ½ T
� Create a child node of CurrentNode labeled with URL_Number

� IF there exists a child of CurrentNode labeled with URL_Number
� CurrentNode Child of CurrentNode labeled with URL_Number

S. Schechter et al. / Computer Networks and ISDN Systems 30 (1998) 457–467 461

� ELSE
� EXIT Do/While Loop

� WHILE (++Index < length of URLSequence)
Ž END - FOR

By zeroing the OccurrenceCount variable of all
tree nodes except the root, we can re-run the algo-
rithm over the set of all user sessions and refine the
shape of the PathTree. We iterate this process until
the shape of the PathTree stabilizes. Typically, this
requires no more than 15 iterative steps.

The following example shows the simplicity of
this algorithm. We demonstrate using a server log
that contains only four pages:
(1) http://stuart.student.harvard.edu/index.html
(2) http://stuart.student.harvard.edu/a.html
(3) http://stuart.student.harvard.edu/b.html

(4) http://stuart.student.harvard.edu/c.html
Without loss of generality, we assume that there

is only one user session recorded in the logs and that
the value T D 2. The sequence of URLs requested
by the user during the session is represented by the
URLSequence array [1,2,1,3,4].

At the beginning of the algorithm the tree is ini-
tialized to contain only the root, labeled with a “*”
character. In the first iteration of the FOR loop, the
path of length one containing URL #1, represented
[1], is added to the path tree. The second iteration of
the FOR loop stores a representation for path [2].

In the third iteration, the second (T th) occurrence
of the path [1] is recorded in the tree. Thus all paths
that have the path [1] as an immediate predecessor
may now be added to the tree. The DO/WHILE loop,

now at a CurrentNode with OccurrenceCount ½ T ,
iterates a second time and records the path consist-
ing of URL #1 followed by URL #3, represented
[1,3].

After the first iteration of the algorithm the tree
is still missing the path [1,2]. We must iterate the
algorithm if we want to accurately count all paths
with immediate predecessors that occur at least T
times. Before each supplemental iteration, we must

clear the OccurrenceCount values of all leaf nodes
so that the new-leaf threshold is not reached prema-
turely. In order to make the final counts accurately
reflect path frequencies, we run a final iteration of
the algorithm with the tree structure in place but with

462 S. Schechter et al. / Computer Networks and ISDN Systems 30 (1998) 457–467

all OccurrenceCount values reset to zero:

3.2. An algorithm for predicting HTTP requests
using paths

It is not immediately clear what prediction tech-
nique provides the best prediction accuracy. An in-
telligent algorithm might combine the tradeoffs be-
tween the depth of a path and the quality of data
(such as number of samples available) at each depth.
Our intent is not to explore the many techniques for
making path-based predictions but to show the merit
in investigating profiling at path depths beyond the
trivial case corresponding to point profiles.

Before describing the algorithm for predicting
HTTP requests using paths, it is first useful to un-
derstand a few special properties of the tree we have
constructed. If a path is found in the tree, than its
maximal suffix also exists in the tree. By induction,
if a path occurs in the tree, then all of its suffixes oc-
cur in the tree. Secondly, note that a path can never
occur more often than its suffix. This is intuitive
because a path cannot occur in a session unless its
suffix also occurs.

We want our algorithm to select the best paths with
which to predict the next URL. To this algorithm we
pass a user’s current session in the form of a path S.
The most recent URL accessed is the most important
predictor because the page returned by that URL con-
tains the hypertext links from which the user is likely
to choose his next destination. We thus work back-
wards from most recent to least recent, applying S to
the path tree in order to predict the next URL in the
session. In order for a path P in the path tree to be
used for prediction, S must be a maximal prefix of P .
The tail URL of the most commonly occurring P is
the URL we choose as our prediction.

To select the path to be used for prediction, we
used an easily coded backwards-stepping algorithm
that is equivalent to the more efficient, but also more
code-intensive, technique we describe later. We start
with a path Q that is the shortest suffix of S, and
then find a matching path M with Q as its maximal
prefix. We then repeat with increasing suffix size un-
til we no longer find a matching path or until Q D S.
We use the longest matching path M as the predicted
path P .

For example, to find the predicted path from a
history path [A; B;C], we would first find all paths
with maximal prefix [C]. One such path might be
[C; D]. We would then find all paths with maxi-
mal prefix [B;C], such as [B;C; E]. If there is no
path with maximal prefix [A; B;C], and [B;C; E]
was the most frequently occurring maximal prefix of
[B;C], then we would predict that the client would
request page E next.

If we were to implement a system where the com-
putational efficiency and memory footprint of the
prediction process were of greater importance, we
would likely want to rid ourselves of the path tree
in its current form. Instead, we would use the path
tree to construct a list of all paths stored in reverse
order, with each entry representing a reverse-ordered
path and the number of times that the path occurred.
Longer paths that make the same prediction as their
shorter counterparts could then be filtered out. We
can do this because there is no reason to predict
using longer paths when they yield the same answers
as paths that take less history into account.

The final step in the efficient system is to sort
the list of the reverse-order paths or turn them
into another tree. Finding the set of paths is now as

S. Schechter et al. / Computer Networks and ISDN Systems 30 (1998) 457–467 463

simple as walking backwards through the current
user’s session while efficiently searching through the
list or tree of paths. The longest path for a session
history is found and a prediction is made in time
bounded by the log of the number of paths.

4. Experimental setup

4.1. Methodology

The predictability of HTTP requests was mea-
sured using training and testing data consistent with
the rules of cross-validation. We used separate data
sets to construct the path tree and to test its utility in
prediction. To fully simulate a practical application
of these logs, testing logs contain only those requests
that occur after all of the training log requests were
collected. In the event that only one log was available
from a given site, the log was split into two pieces,
and the first section of which was used as training
data for building the path tree.

Many HTTP requests are images and background
sound files. While such files are usually static and of-
ten quite predictable, some sites contain dynamically
customized images, such as stock graphs. Because
this paper analyzes sites without a significant amount
of dynamic graphic content, the inline images files
are neither predicted nor taken into account in the
prediction process.

As mentioned in Section 2, the parameter field
of the URL may be essential to the nature of the
request or it may contain garbage that causes false
prediction misses. In order to ensure the generality
of the algorithm, tests have been performed twice to
ensure that parameters will not significantly affect
our results. In one case, the parameter field is used
for prediction and matching parameters are required
for a prediction to be deemed correct. Tests were also
run with parameters ignored in both the prediction
process and in prediction correctness evaluation.

We choose a threshold value of T D 3 for the path
construction algorithm in Section 3.2. This value
ensured a reasonable amount of path expansion to
allow us to fully differentiate between path and point
predictions.

For each test we tracked how many HTTP re-
quests we encountered in our test data and how often

the prediction of the next request was correct. Pre-
dictability rates can be measured from the perspec-
tive of either the server or the client. The rate seen
by the server counts as incorrect those predictions
that are made after the user no longer requests any
further documents. The client-viewed predictability
rate takes misprediction into account only if it will
result in a longer response time for a future request.
Hence client-viewed predictability rates throw out
the case where the server makes a prediction but the
user never requests another page because the client
never sees the consequences of the misprediction.
Since we are most concerned with how the client
perceives latency, we use client-viewed rates. It is
important to note that prediction begins after the
first client request and that we do not include this
request in the calculation of our client-based predic-
tion rate. We predict the sequence of requests within
a user’s session; we do not predict the start of a
session.

4.2. Data set

Logs were obtained from a number of sites.
The logs referred to as PlanetAll were recorded
at the members-only area of www.planetall.com, a
site composed almost entirely of dynamic content
specific to a user’s profile. This data set is partic-
ularly interesting because it represents a small but
extremely useful Web application where good per-
formance is as important as it is difficult to achieve.

The Lotus Corporation provided us with a log file
from a Domino-based server. This data set, referred
to as Domino, was used to ensure that our results
were not server dependent.

The logs referred to as ASP represent another site
rich in dynamic content — the ASP sample pages
that formerly resided at iisa.microsoft.com. The ASP
sample pages were available over the Internet to beta
users of Microsoft’s Internet Information Server.

We also analyzed log files from www.micro
soft.com to test the suitability of our approach on
an extremely large site that resembles a data store
more than an application. We refer to these logs as
Microsoft.com. The extended format of these logs
included unique identifiers to differentiate each user.
Microsoft.com had by far the most traffic and the
largest set working set of any of our logs. The

464 S. Schechter et al. / Computer Networks and ISDN Systems 30 (1998) 457–467

test data contains over 8000 independent URLs ac-
cessed by over 50,000 users in a small portion of a
day.

Unfortunately, the microsoft.com logs were col-
lected on a single server operating in a multi-server
environment. Train and test data for this site were
obtained using the same server log, within the con-
straints described above, to guarantee that both data
sets would correspond to the same server and the
same site structure.

5. Results and analysis

During each test, we tallied results for three types
of prediction: point, path, and agreement. Point pre-
dictions guess the next request by looking only at the
last URL requested by the user. Path prediction uses
the algorithm described in Section 3.2. Both of these
techniques make a prediction, be it correct or incor-
rect, about the next request only when information
exists to make a prediction. Figure 1 reports the per-
centage of requests that were predicted by our point
and path techniques. Recall that a point-based pre-
diction is equivalent to a path-based prediction that
stops after the first iteration, using only the shortest
suffix for P . For both point and path profiles, the
minimal amount of information required to make a
prediction is the same — the tree must contain a path
of length two must which has as its maximal prefix
the most recent URL requested (the shortest suffix
of the user session). For this reason we do not dif-
ferentiate between the two types of predictions when
determining whether these algorithms have enough
information to make a prediction.

Our final technique, which we call agreement,
first determines what prediction our point and path
techniques would make, and if these predictions
match, only then does the agreement technique make
a prediction. As our later results show, agreement-
based prediction results in higher correct prediction
rates. However, this technique also makes fewer pre-
dictions than the point-based and path-based tech-
niques. If server resources are limited, we may
achieve a net performance win by restricting the
cases in which we make predictions (i.e. pre-gen-
erate some dynamic content). Checking if the point
and path predictions agree is one method for assign-

Fig. 1. Point/path prediction. This graph plots the percent of
requests in our test log for which the path-profile and point-pro-
file based prediction algorithms had enough data to attempt to
predict the next page to be requested.

Fig. 2. Agreement prediction. This graph plots the percent of
requests in our test log for which the agreement based prediction
algorithm attempted to predict the next page to be requested.

ing a confidence to the prediction. A similar idea has
been proposed in the field of branch prediction to re-
duce the wasting of processor resources on branches
that are extremely hard to predict correctly [3]. Fig-
ure 2 shows that our heuristic often restricts us to
predicting only half of future URLs requested. The
Microsoft.com logs showed the more agreement than
other logs because the large number of URLs in the
logs resulted in a broad tree where path predictions
were often made from the same path of length two
as the point prediction.

In Fig. 3, the results from PlanetAll show client-
viewed prediction rates above 40% for all algorithms

S. Schechter et al. / Computer Networks and ISDN Systems 30 (1998) 457–467 465

Fig. 3.

Fig. 4.

and both choices of parameter inclusion. Regardless
of the handling of the parameter field, the path-
based prediction rate was slightly superior to point-
based prediction. Predictions made with agreement
between point-based and path-based techniques were
correct more than half the time.

The predictability rates from the Domino site,
shown in Fig. 4, were only slightly lower than those
for PlanetAll.

The results from Microsoft’s ASP sample site
were even more impressive. We see in Fig. 5 that
path-based guesses predicted the correct next page
more than half the time.

As expected the largest site, Microsoft.com, had
the lowest levels of predictability (see Fig. 6). It is
still impressive to note that a site with over 8000
URLs accessed over a short time period yielded
predictability rates of over 40%.

Fig. 5.

Fig. 6.

While the predictability rates above do not ap-
proach the levels attainable for simpler problems
such as predicting one of two directions for a condi-
tional branch, these rates are surprisingly high when
one considers the number of options a user has when
she approaches a given page. These prediction rates
are certainly high enough to justify further research
into the area of page pre-generation.

6. Future and related work

Past attempts at predicting HTTP requests have
focused on prefetching images that are referenced
in HTML documents. The Wcol proxy, developed at
the Nara Institute of Science and Technology, starts
prefetching images from the server as it sends the
HTML documents back to the client [2].

466 S. Schechter et al. / Computer Networks and ISDN Systems 30 (1998) 457–467

Predicting a user’s next step is just one benefit of
obtaining a having such a profile. There are many
other uses of path profiles of HTTP server logs. For
example, upon learning that the majority of users
go to page c after going from page a to page b, an
intelligent Web designer may find it beneficial, for
both the user and the server, to place a direct link
from page a to page c.

Another application of path profiling includes the
use of user paths as an indication of user behavior.
Existing tools, which classify users strictly on the
behavior of accessing a page [1] may benefit by
classifying users by the paths they take through these
pages. By using paths, such tools may benefit from
the information inherent in the temporal ordering of
user accesses to the site.

7. Conclusion

Path profiles can be efficiently created from HTTP
server logs. Using these profiles, we find that the
HTTP requests generated by today’s dynamic Web
applications have a surprisingly high level of pre-
dictability.

Given that most servers spend a significant por-
tion of CPU cycles idling, we should take advantage
of this predictability and use these free cycles to
hide the latency of page generation from the user as
often as possible. To best utilize a limited number
of free cycles, we can use a heuristic of predicting
pages only when both the point-based and the path-
based predictions agree. On corporate Intranets that
do not suffer from the bandwidth problems faced
by the larger Internet, Web applications could push
predicted pages to their clients before the page is
even requested by the user.

Acknowledgements

David Treadwell and J. Allard of Microsoft gave
us the freedom to research techniques outside the
immediate needs of the Internet Information Server
team. George Reilly, also of Microsoft, provided
ideas and technical support. Brian Robertson of
PlanetAll 3 was essential in providing us with data
from an independent site. The Lotus Corporation

provided logs from an independent server prod-
uct.

At Harvard Brad Chen 4 and Margo Seltzer 5

provided ideas and pointers to related work. Clifford
Young 6 provided a great deal of insight into path
profiling.

Michael D. Smith is funded in part by a NSF
Young Investigator award (grant no. CCR-9457779),
a DARPA grant no. NDA904-97-C-0225, and re-
search gifts from AMD, Digital Equipment, HP, and
Intel.

References

[1] Breese, J., Fayyad, U., and Heckerman, D., Conversations
of 8/97, Microsoft Research, Microsoft Corporation.

[2] Information Network Laboratory, Nara Institute of Sci-
ence and Technology, Japan, Wcol: WWW Collector
Home Page, http://shika.aist-nara.ac.jp/products/wcol/wcol
D.html

[3] Jacobsen, E., Rotenberg, E., and Smith, J., Assigning con-
fidence to conditional branch predictions, in: Proc. of the
29th Annual ACM/IEEE International Symposium on Mi-
croarchitecture, December 1996, pp. 142–152.

[4] Microsoft Corporation, USA, Microsoft Site Server usage
analyst technical details, http://backoffice.microsoft.com/pr
oducts/features/UsageAnalyst/SiteServer_TechDetails.asp

[5] Young, R., Path based compilation, Ph.D. Thesis, Division
of Engineering and Applied Sciences, Harvard University,
1997.

Stuart E. Schechter is working on
his Ph.D. in Computer Science at
Harvard University. He is also a per-
petual intern at Microsoft, where he
has worked on the Internet Infor-
mation Server, Java VM, and Win-
dows 95 teams. His research inter-
ests include architecture, compilation,
anonymity in computer security, and
HTTP server performance. He re-
ceived a B.S. in Computer and Infor-
mation Science from The Ohio State

University in 1996 and will receive his Masters in Computer
Science from Harvard in June, 1998. Home page: http://www.ee
cs.harvard.edu/¾stuart

3 http://www.PlanetAll.com
4 http://www.eecs.harvard.edu/¾bchen
5 http://www.eecs.harvard.edu/¾margo
6 http://www.eecs.harvard.edu/¾cyoung

S. Schechter et al. / Computer Networks and ISDN Systems 30 (1998) 457–467 467

Murali Krishnan is the lead perfor-
mance and application infrastructure
developer for Microsoft’s Internet In-
formation Server. He has developed
parts of the core Web server for Win-
dows NT, as well as tools and anal-
ysis to improve the Web server per-
formance. Currently, he is working
on enhanced application infrastructure
and support for future Web server ap-
plications. He received a B.E. in Com-
puter Science and Engineering from

Anna University, India in 1992 and an M.S. in Computer Science
from University of Wisconsin-Madison in 1994.

Michael D. Smith is an Associate
Professor of Electrical Engineering
and Computer Science in the Division
of Engineering and Applied Sciences
at Harvard University. His research
focuses on the experimental realiza-
tion of innovative compilation tech-
niques and novel computer architec-
tures to improve the capability and
performance of computer systems. He
received a B.S. degree in Electrical
Engineering and Computer Science

from Princeton University in 1983, a M.S. degree in Electrical
Engineering from Worcester Polytechnic Institute in 1985, and a
Ph.D. in Electrical Engineering from Stanford University in 1993.
He is a member of the IEEE and the ACM, and he is the recipient
of a 1994 NSF Young Investigator Award. Home page: http://ww
w.eecs.harvard.edu/smith

